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ABSTRACT
In this paper, we study the family of renewal shot-noise processes. The
Feynmann–Kac formula is obtained based on the piecewise deterministic
Markov process theory and the martingale methodology. We then derive
the Laplace transforms of the conditional moments and asymptotic
moments of the processes. In general, by inverting the Laplace transforms,
the asymptotic moments and the first conditional moments can be derived
explicitly; however, other conditional moments may need to be estimated
numerically. As an example, we develop a very efficient and general
algorithm of Monte Carlo exact simulation for estimating the second
conditional moments. The results can be then easily transformed to the
counterparts of discounted aggregate claims for insurance applications,
and we apply the first two conditional moments for the actuarial net
premium calculation. Similarly, they can also be applied to credit risk and
reliability modelling. Numerical examples with four distribution choices
for interarrival times are provided to illustrate how the models can be
implemented.
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1. Introduction

Since the beginning of the twentieth century, shot-noise processes have been extensively used tomodel
a very wide variety of natural phenomena, with numerous applications in electronics, optics, biology
and many other fields in natural science, see early literature in Campbell (1909a, 1909b), Schottky
(1918), Picinbono et al. (1970) and Verveen & DeFelice (1974). More recent applications extended
to insurance and actuarial science in particular can be found in Klüppelberg & Mikosch (1995),
Brémaud (2000), Dassios & Jang (2003, 2005), Jang (2004), Jang & Krvavych (2004), Torrisi (2004),
Albrecher & Asmussen (2006), Macci & Torrisi (2011), Zhu (2013) and Schmidt (2014). Mostly, they
adopted the classical Poisson shot-noise process (Cox& Isham 1980, p. 88), where the arrivals of claims
are simply assumed to follow a Poisson process. However, an exponential distribution could be not
appropriate formodelling claim interarrival times in practice when the likelihood of a claim given the
time elapsed since the previous one is not constant over time. There has been a significant volume of
literature that questions the appropriateness of a Poisson process in insurance modelling (Seal 1983,
Beard et al. 1984) such as the rainfall modelling (Cox & Isham 1980, Smith 1980). For catastrophic
events (e.g. floods, storms, hails, bushfires, earthquakes and terrorist attacks), the assumption that
resulting claims occur in terms of a Poisson process is inadequate as it has a deterministic intensity,
i.e. it has the same claim frequency rate between the same time interval of duration.
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A natural generalisation of Poisson process is the family of renewal processes (Cox 1962, Cox &
Miller 1965, Karlin & Taylor 1975, Grandell 1991, Ross 1996, Rolski et al. 2008), which could offer
more flexible model choices and are versatile enough to capture different styles of claim interarrival
times in reality. Using ordinary, delayed and stationary renewal processes to derive the moments
and moment generating functions of compound renewal sums with discounted claims can be found
in Léveillé & Garrido (2001a, 2001b) and Léveillé et al. (2010). Since Andersen (1957) proposed to
use a compound renewal risk model and Gerber & Shiu (1998) introduced the so-called discounted
penalty function, the delayed and stationary renewal risk models and their extensions for modelling
insurers’ surplus processes can also be noticed in Willmot & Dickson (2003), Gerber & Shiu (2005),
Li & Garrido (2005), Willmot (2007) and Woo (2010).

In this paper, we mainly study renewal shot-noise processes, the generalised family of Poisson
shot-noise process. They are shot-noise processes driven by ordinary renewal processes, so that the
interarrival times could be any positive independent identically distributed random variables. This
paper can be considered as the generalisation of Jang (2004) from the classical Poisson process
to a rather general renewal process for the underlying point process. However, this generalisation
is technically nontrivial, since the renewal components lead our new models beyond the affine
framework in general, and several new approaches have been adopted or developed to investigate
the properties of moments. Based on the piecewise deterministic Markov process theory (Davis 1984,
1993) and the martingale methodology (Dassios & Embrechts 1989), we first obtain the Feynmann–
Kac formula. We then derive the Laplace transforms of the conditional moments and asymptotic
moments of the processes. In general, by inverting the Laplace transforms of these moments, any
asymptotic moments as well as the first conditional moments can be derived explicitly, however,
other conditional moments may need to be estimated numerically. As an example, we develop a
very efficient and general algorithm of Monte Carlo exact simulation for estimating the second
conditional moments. The results then can be easily transformed to the counterparts of discounted
aggregate claims in insurance, and we apply the first two conditional moments for the actuarial
net premium calculation. Similarly, they can also be applied to credit risk and reliability modelling.
Numerical examples with four different distributions for modelling interarrival times are provided,
and the implementation details are also discussed.

This paper is structured as follows. Section 2 introduces renewal shot-noise processes and the
associated processes of discounted aggregate claims in insurance. In Section 3, based on the piecewise
deterministic Markov process theory and the martingale methodology, we present the Feynmann–
Kac formula. It is then used in Section 4 to derive the Laplace transforms of the moments of renewal
shot-noise processes and discounted aggregate claims. Afterwards, in Section 5, we apply the results
of the means and variances to the actuarial context for calculating net insurance premiums as well
as credit risk and reliability modelling, for which we specify exponential, gamma, inverse Gaussian
and folded normal distributions for modelling interarrival times, respectively. Section 6 contains
concluding remarks.

2. Renewal shot-noise processes and discounted aggregate claims

Claims arising from catastrophic events could be different from the different time interval of duration,
and they could also depend on the time elapsed since the previous claim. Therefore, improvedmodels
beyond the Poisson process to predict claims arising from catastrophic events are required. For
this purpose, let us start with a compound model of insurance risk with the additional economic
assumption of a positive interest rate, and the accumulated value of aggregate claims up to time t in
continuous time on a probability space (�,F ,P) is

Lt =
Nt∑
i=1

Xier
(
t−Ti

)
, t ≥ 0,
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where

• r > 0 is the risk-free force of interest rate;
• {Xi}i=1,2,... are claim sizes (or jump sizes), which are assumed to be independent and identically
distributed (i.i.d.) with cumulative distribution function (CDF) H(x), x > 0;

• {Ti}i=1,2,... are the claim occurrence times (or, renewal epochs), which follows a renewal point
process Nt = ∑

i 1{Ti≤t} with N0 = 0.

Ft is the associated natural filtration of Lt . Setting L0t = e−rtLt , we have the discounted value at time
0 of aggregate claims (or, discounted aggregate claims) up to time t, i.e.

L0t =
Nt∑
i=1

Xie−rTi . (2.1)

As Jang (2004) and Jang & Krvavych (2004) noted the duality property between the process of
discounted aggregate claims and the shot-noise process, we now introduce a renewal shot-noise
process (or, shot-noise process driven by an ordinary renewal process)

St = S0e−δt +
Nt∑
i=1

Xie−δ
(
t−Ti

)
, (2.2)

where δ is a constant. Setting S0 = 0 and δ = −r in (2.2), the processes of St and Lt become identical.
St was also discussed in Rice (1977) and was used as the stochastic intensity of a double stochastic
Poisson process (orCox process) inMøller &Torrisi (2005) andDassios et al. (2015). Simulated sample
paths of the renewal shot-noise process St and the underlying renewal process Nt are provided in
Figure 1, where we assume the interarrival times follow an inverse Gaussian distribution and jump
sizes follow an exponential distribution.

Note that, this process St is no longer within the usual framework of affine processes (Duffie et
al. 2000, 2003) or a Markov process due to the additional renewal components. In order to establish
a Markovian framework, we need to further include a supplementary stochastic process Ut , the
backward recurrence time (Cox 1962, p. 27) (or the time elapsed since the last jump arrived) in the
process St , i.e.

Ut := U0 + t −
Nt∑
i=1

τi,

where U0 ≥ 0 is the initial value of Ut ; {τi}i=1,2,... are interarrival times of claim arrivals, i.e.

τi := Ti − Ti−1, i = 1, 2, . . . , T0 = 0,

and they are i.i.d. with the CDF P(u), u > 0, which is assumed to be absolutely continuous with
the associated density function p(u). The idea of adding this supplementary variable Ut to make the
underlying process Markovian can be found as early as in Cox (1955). Ut increases at unit rate till a
jump arrives, then it goes back to 0. Note that, if ρ(u) is denoted as the failure rate of the distribution,
we have

P(u) = 1 − exp
(

−
∫ u

0
ρ(v)dv

)
, p(u) = ρ(u) exp

(
−
∫ u

0
ρ(v)dv

)
,

where ρ(u) = p(u)
P̄(u) , and P̄(u) := 1 − P(u) is denoted as the tail probability or the survivor function

(Cox 1962, p. 3). For notation simplification, we denote the first mean and the Laplace transform
respectively by
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Figure 1. Simulated paths of renewal shot-noise process St and renewal process Nt when the interarrival times follow an inverse
Gaussian distribution and jump sizes follow an exponential distribution.

γ1 :=
∫ ∞

0
up(u)du < ∞, p̂(θ) :=

∫ ∞

0
e−θup(u)du < ∞.

We denote the mth moment of St conditional on S0 and U0 and the associated Laplace transform
with respect to time t respectively by

em(t; S0,U0; δ) := E
[
Smt | S0,U0

]
, m ∈ N

+,

êm(θ; S0,U0; δ) :=
∫ ∞

0
e−θ t

E
[
Smt | S0,U0

]
dt,

and the moments of claim amounts by

μk :=
∫ ∞

0
xkdH(x), k = 0, 1, 2, . . . .

The Laplace transform of any given function f (t) in general is denoted by

f̂ (t) := Lθ

{
f (t)

} :=
∫ ∞

0
e−θ t f (t)dt.

All moments and Laplace transforms above are assumed to be finite.
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3. Martingales

Let us define a process

Zt =
∫ t

0
e−θu

m∑
k=1

κkSkudu, (3.1)

where θ ≥ 0 and {κk}k=1,2,...,m are all constants. The infinitesimal generator of
(
Zt , St ,Ut , t

)
acting

on any function g
(
z, s, u, t

)
belonging to its domain is given by

Ag(z, s, u, t) =
(
e−θ t

m∑
k=1

κksk
)

∂g
∂z

+ ∂g
∂t

+ ∂g
∂u

− δs
∂g
∂s

+ p(u)
P̄(u)

[∫ ∞

0
g(z, s + x, 0, t)dH(x) − g(z, s, u, t)

]
, (3.2)

where g : (0,∞) × (0,∞) × (0,∞) × R
+ → (0,∞). It is sufficient that g(z, s, u, t) is differentiable

with respect to z, s, u, t for any z, s, u, t and that∣∣∣∣
∫ ∞

0
g(·, s + x, ·, ·)dH(x) − g(·, s, ·, ·)

∣∣∣∣ < ∞ (3.3)

for g(z, s, u, t) to belong to the domain of the (extended) generator A. For the details on finding the
generator of

(
Zt , St ,Ut , t

)
using the piecewise deterministic Markov process theory (Davis 1984, 1993),

see Dassios & Embrechts (1989), Dassios & Jang (2003), Rolski et al. (2008), Dassios & Zhao (2011,
2012, 2014) and many others.

Let us first provide a proposition as below which will be used very often in this paper.
Proposition 3.1: The ordinary differential equation (ODE) of A(u),

a − ξA(u) + A′(u) + p(u)
P̄(u)

[
b + A(0) − A(u)

] = 0, (3.4)

has the solution

A(u) := a
ξ

+ b
1 − p̂(ξ)

eξu

P̄(u)

∫ ∞

u
e−ξvp(v)dv, (3.5)

where a, b, ξ are all constants, and ξ ≥ 0.
Now, in order to derive themth moment of St conditional on S0 and U0 at time t = 0 in the next

section, we have to first find a suitable martingale with respect to the filtration Ft , which is given in
Theorem 3.1.
Theorem 3.1: We have a Ft -martingale

Zt + e−θ t
m∑
k=0

Skt Ak(Ut), (3.6)

where

Ak(u) := κk

θ + δk
+
∑m

n=k+1 An(0)
(n
k
)
μn−k

1 − p̂(θ + δk)
e(θ+δk)u

P̄(u)

∫ ∞

u
e−(θ+δk)vp(v)dv, k = 0, 1, . . . ,m − 1,

(3.7)
and

Am(u) := κm

θ + δm
. (3.8)
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Proof: To find a Ft-martingale, we assume a function in form of

g(z, s, u, t) = z + e−θ t
m∑
k=0

skAk(u). (3.9)

Setting Ag = 0 in (3.2), we obtain the equation

m∑
k=1

κksk − θ

m∑
k=0

skAk(u) +
m∑
k=0

skA′
k(u) − δ

m∑
k=0

kskAk(u)

+ p(u)
P̄(u)

[∫ ∞

0

m∑
k=0

(s + x)kAk(0)dH(x) −
m∑
k=0

skAk(u)

]
= 0.

Note that, based on (s + x)k = ∑k
j=0

(k
j
)
sjxk−j where

(
k
j

)
:= k!

j!(k − j)! , j = 0, 1, . . . , k,

we have

0 =
m∑
k=1

κksk − θ

m∑
k=0

skAk(u) +
m∑
k=0

skA′
k(u) − δ

m∑
k=0

kskAk(u)

+ p(u)
P̄(u)

⎡
⎣∫ ∞

0

m∑
k=0

k∑
j=0

(
k
j

)
sjxk−jAk(0)dH(x) −

m∑
k=0

skAk(u)

⎤
⎦

=
m∑
k=1

κksk − θ

m∑
k=0

skAk(u) +
m∑
k=0

skA′
k(u) − δ

m∑
k=0

kskAk(u)

+ p(u)
P̄(u)

⎡
⎣ m∑

k=0

k∑
j=0

(
k
j

)
sjμk−jAk(0) −

m∑
k=0

skAk(u)

⎤
⎦ ,

where

μk−j =
∫ ∞

0
xk−jdH(x), j = 0, 1, 2, . . . , k.

Then, setting κ0 = 0, we can rewrite it by

m∑
k=0

sk
[
κk − (θ + δk)Ak(u) + A′

k(u)
]

+ p(u)
P̄(u)

m∑
k=0

⎡
⎣Ak(0)

k∑
j=0

(
k
j

)
μk−jsj − skAk(u)

⎤
⎦

=
m∑
k=0

ck(u)sk = 0, (3.10)

where ck(u) is the coefficient of sk, i.e.

ck(u) := κk − (θ + δk)Ak(u) + A′
k(u) + p(u)

P̄(u)

[ m∑
n=k

An(0)
(
n
k

)
μn−k − Ak(u)

]
, k = 0, 1, . . . ,m.
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Since (3.10) should hold for any sk where ∀k ∈ {0, 1, 2, . . . ,m}, each coefficient should be equal to
zero, i.e. we have the ODEs

ck(u) = 0, k = 0, 1, . . . ,m.

Using Proposition 3.1, we have the solutions

Ak(u) = κk

θ + δk
+
∑m

n=k An(0)
(n
k
)
μn−k

1 − p̂(θ + δk)
e(θ+δk)u

P̄(u)

∫ ∞

u
e−(θ+δk)vp(v)dv,

with the boundary conditions Ak(0) = 0 for k = 0, 1, . . . ,m. More specifically, they are equivalent
to (3.7) for k = 0, 1, 2, . . . ,m− 1 and (3.8) for k = m. Finally, it is easy to see that, this function (3.9)
is differentiable with respect to all its arguments z, s, u, t, and also the expectation of the associated
jumps is bounded, i.e. it satisfies (3.3). Hence, it belongs to the domain of the (extended) generator
A. It is based on the piecewise deterministic Markov process theory, which was developed by Davis
(1984, Theorem 5.5, p. 367), see also more details on this theory and its conditions in the book by
Davis (1993, p. 69).

Proposition 3.2: We have the Feynmann–Kac formula

E

[∫ ∞

0
e−θ t

m∑
k=1

κkSkt dt | S0,U0

]
=

m∑
k=0

Sk0Ak(U0). (3.11)

Proof: Using theFt-martingale (3.6) provided in Theorem 3.1 and the martingale property, we have
the expectation conditional on S0 and U0 at time t = 0 by

E

[
Zt + e−θ t

m∑
k=0

Skt Ak(Ut) | S0,U0

]
=

m∑
k=0

Sk0Ak(U0). (3.12)

Setting t = ∞ in (3.12), (3.11) follows immediately.

Applications of the Feynmann–Kac formula in general can be found in Karatzas & Shreve (1991).
Its applications to financial mathematics can be noticed in Linetsky (1997, 2004, 2007) and the
refereed papers therein. More recently, Goovaerts et al. (2012) constructed a recursive scheme for the
Laplace transform of the transition density function of a diffusion process using the Feynmann–Kac
formula, also see Shang et al. (2011).

4. Moments

In this section, we first derive Laplace transforms of the conditional moments and asymptotic
moments of renewal shot-noise processes and discounted aggregate claims, respectively. Then,
by inverting the Laplace transforms, we obtain the asymptotic moments and the first conditional
moments in explicit forms. They are the main contribution of this paper. As examples, the associated
first two moments and variances are discussed in more details.

4.1. Moments of renewal shot-noise processes

Theorem 4.1: The Laplace transform (with respect to time t) of the mth moment of St conditional on
S0 and U0 is given by

êm(θ; S0,U0; δ) =
m∑
k=0

Sk0A
∗
k(U0), (4.1)
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where the series of functions
{
A∗
k(u)

}
k=0,1,...,m can be iteratively solved from the system of equations

A∗
m(u) := 1

θ + mδ
, (4.2)

A∗
k(u) :=

∑m
n=k+1 A

∗
n(0)

(n
k
)
μn−k

1 − p̂(θ + δk)
e(θ+δk)u

P̄(u)

∫ ∞

u
e−(θ+δk)vp(v)dv, k = m − 1,m − 2, . . . , 1, 0,

(4.3)

with

A∗
m(0) = 1

θ + mδ
,

A∗
k(0) = p̂(θ + δk)

1 − p̂(θ + δk)

m∑
n=k+1

A∗
n(0)

(
n
k

)
μn−k, k = m − 1,m − 2, . . . , 1, 0.

Proof: Firstly, we express (3.11) in terms of Laplace transforms by

m∑
k=1

κkêk(θ; S0,U0; δ) =
m∑
k=0

Sk0Ak(U0). (4.4)

Setting κm = 1 and κk = 0 for all k = 1, . . . ,m − 1 in (4.4), (3.7) and (3.8), we have (4.1), (4.2) and
(4.3), respectively. Further setting u = 0 in (4.3), we have

A∗
k(0) =

∑m
n=k+1 A

∗
n(0)

(n
k
)
μn−k

1 − p̂(θ + δk)

∫ ∞

0
e−(θ+δk)vp(v)dv = p̂(θ + δk)

1 − p̂(θ + δk)

m∑
n=k+1

A∗
n(0)

(
n
k

)
μn−k.

Based on Theorem 4.1, it is straightforward to obtain the Laplace transform for any conditional
moment of St . For example, the Laplace transforms of the first two moments are specified as below.
Corollary 4.1: The Laplace transform of the first moment of St conditional on S0 and U0 is given by

ê1(θ; S0,U0; δ) = S0
θ + δ

+ μ1

1 − p̂(θ)

1
θ + δ

eθU0

P̄(U0)

∫ ∞

U0

e−θvp(v)dv. (4.5)

Proof: Set κ2 = 0 and κ1 = 1 in (3.7) and (3.8), then, we have

A∗
2(u) = 0, A∗

1(u) = 1
θ + δ

, A∗
0(u) = μ1

1 − p̂(θ)

1
θ + δ

eθu

P̄(u)

∫ ∞

u
e−θvp(v)dv.

From (4.4), the result follows.

Corollary 4.2: The Laplace transform of the second moment of St conditional on S0 and U0 is given
by

ê2
(
θ; S0,U0; δ

) = S20
θ + 2δ

+ S0
θ + 2δ

2μ1

1 − p̂(θ + δ)

e(θ+δ)U0

P̄(U0)

∫ ∞

U0

e−(θ+δ)vp(v)dv

+
μ2

θ+2δ + 1
θ+2δ

2μ2
1p̂(θ+δ)

1−p̂(θ+δ)

1 − p̂(θ)

eθU0

P̄(U0)

∫ ∞

U0

e−θvp(v)dv. (4.6)
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Proof: Setting κ2 = 1 and κ1 = 0 in (3.7) and (3.8), we have

A∗
2(u) = 1

θ + 2δ
,

A∗
1(u) = 1

θ + 2δ
2μ1

1 − p̂(θ + δ)

e(θ+δ)u

P̄(u)

∫ ∞

u
e−(θ+δ)vp(v)dv,

A∗
0(u) =

μ2
θ+2δ + 1

θ+2δ
2μ2

1p̂(θ+δ)

1−p̂(θ+δ)

1 − p̂(θ)

eθu

P̄(u)

∫ ∞

u
e−θvp(v)dv.

From (4.4), the result follows.

The distribution converges pretty fast, and we can easily observe how the distribution converges
to its asymptotic distribution via its mean.
Corollary 4.3: We have the asymptotics of the first moment,

e1(t; S0,U0; δ) = d0 + d1e−δt + o
(
e−δt) , (4.7)

where

d0 := μ1

δγ1
, d1 := S0 + μ1

P̄(U0)

e−δU0

1 − p̂( − δ)

∫ ∞

U0

eδvp(v)dv.

Proof: The Laplace transform of the first moment of St conditional on S0 and U0 is given by (4.5).
We know that the limit limt→∞ e1(t; S0,U0; δ) exists, more precisely,

d0 := lim
t→∞ e1(t; S0,U0; δ)

= lim
θ→0

θ ê1(θ; S0,U0; δ)

= μ1

P̄(U0)

∫ ∞

U0

lim
θ→0

[
1

θ + δ

θ

1 − p̂(θ)
eθ(U0−v)

]
p(v)dv

= 1
δ

1
γ1

μ1

P̄(U0)

∫ ∞

U0

p(v)dv

= μ1

δγ1
.

Define the function

g(t) := eδt
[
e1(t; S0,U0; δ) − d0

]
,

and its Laplace transform

ĝ(θ) :=
∫ ∞

0
e−θ t g(t)dt.
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Then, we have

d1 := lim
t→∞ g(t)

= lim
θ→0

θ ĝ(θ)

= lim
θ→0

θ

[
ê1
(
θ − δ; S0,U0; δ

)− d0
θ − δ

]

= lim
θ→0

θ

[
1
θ
S0 + 1

θ

μ1

1 − p̂(θ − δ)

e(θ−δ)U0

P̄(U0)

∫ ∞

U0

e−(θ−δ)vp(v)dv

]

= S0 + μ1

P̄(U0)

∫ ∞

U0

lim
θ→0

[
e(θ−δ)(U0−v)

1 − p̂(θ − δ)

]
p(v)dv

= S0 + μ1

P̄(U0)

e−δU0

1 − p̂( − δ)

∫ ∞

U0

eδvp(v)dv.

Therefore, we have (4.7).

We can see from (4.7) that the conditional moment converges at an exponential rate with respect
to time t, and the asymptotic results could provide reasonable approximations to their moments and
distributions.

The initial valueU0 is usually unknown in practice. To calculate the first two conditional moments
of St for actuarial applications, we assign the asymptotic (or limiting) distribution of Ut to U0 for
mathematical convenience, which can provide reasonable approximations and also substantially
simplify the expressions of the Laplace transforms of moments. To do so, we first state a proposition
in Cox & Miller (1965, p. 347) or Cox (1962, p. 61), which is a well-known result in renewal theory.
Proposition 4.1: The asymptotic (or limiting) distribution of Ut , denoted by �, has the density
function

f�(u) := P̄(u)
γ1

= 1
γ1

exp
(

−
∫ u

0
ρ(v)dv

)
, u ≥ 0.

� is in fact the limiting distribution of Ut when t → ∞, and it can serve a reasonable approxi-
mation for the distribution of Ut when the underlying process has been running for a relatively long
period and is close to the stationary (asymptotic) state (Cox 1962, Chapter 5, p. 61–70).

Now, let us start with finding the asymptoticmth moment of St when U0 ∼ �, denoted by

em(t; S0; δ) := E
[
Smt | S0

]
.

Denote the Laplace transform (with respect to time t) of themth moment of St conditional on S0 by

êm(θ; S0; δ) := E
[
êm(θ; S0,U0)

]
, U0 ∼ �.

Proposition 4.2: If U0 ∼ �, then, we have

E

[
eξU0

P̄(U0)

∫ ∞

U0

e−ξvp(v)dv
]

= 1
γ1

1 − p̂(ξ)

ξ
.
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Proof:

E

[
eξU0

P̄(U0)

∫ ∞

U0

e−ξvp(v)dv
]

=
∫ ∞

u=0

eξu

P̄(u)

∫ ∞

v=u
e−ξvp(v)dvf�(u)du

=
∫ ∞

u=0

∫ ∞

v=u
e−ξvp(v)

eξu

γ1
dvdu

=
∫ ∞

v=0

∫ v

u=0
e−ξvp(v)

eξu

γ1
dudv

= 1
γ1

∫ ∞

v=0
e−ξvp(v)

(∫ v

u=0
eξudu

)
dv

= 1
γ1

∫ ∞

v=0
e−ξvp(v)

eξv − 1
ξ

dv

= 1
γ1

∫ ∞

v=0
p(v)

1 − e−ξv

ξ
dv

= 1
γ1

1 − p̂(ξ)

ξ
.

Theorem 4.2: For U0 ∼ �, the Laplace transform of the mth moment of St conditional on S0 is given
by

êm(θ; S0; δ) =
m∑
k=0

Bk(θ)Sk0, (4.8)

where

Bm(θ) := 1
θ + mδ

,

Bk(θ) := 1
γ1

1
θ + δk

m∑
n=k+1

A∗
n(0)

(
n
k

)
μn−k, k = m − 1,m − 2, . . . , 1, 0. (4.9)

Proof: Using (4.1) and Proposition 4.1, we have

êm(θ; S0; δ) = E
[
êm(θ; S0,U0; δ)

] = E

[ m∑
k=0

Sk0A
∗
k(U0)

]
=

m∑
k=0

Sk0E
[
A∗
k(U0)

]
,

where

Bk(θ) := E
[
A∗
k(U0)

] =
∑m

n=k+1 A
∗
n(0)

(n
k
)
μn−k

1 − p̂(θ + δk)
E

[
e(θ+δk)U0

P̄(U0)

∫ ∞

U0

e−(θ+δk)vp(v)dv

]

=
∑m

n=k+1 A
∗
n(0)

(n
k
)
μn−k

1 − p̂(θ + δk)
1
γ1

1 − p̂(θ + δk)
θ + δk

= 1
γ1

1
θ + δk

m∑
n=k+1

A∗
n(0)

(
n
k

)
μn−k, k = m − 1,m − 2, . . . , 1, 0.
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Theorem 4.3: For U0 ∼ �, the mth asymptotic moment of St is given by

lim
t→∞ E

[
Smt | S0

] = 1
γ1

m∑
k=1

μkA∗∗
k , (4.10)

where the constants
{
A∗∗
k
}
k=1,...,m can be calculated iteratively from

A∗∗
m := 1

mδ
,

A∗∗
k := p̂(δk)

1 − p̂(δk)

m∑
n=k+1

A∗∗
n

(
n
k

)
μn−k, k = m − 1,m − 2, . . . , 1.

Proof: By the final value theorem, we have

lim
t→∞ E

[
Smt | S0

] = lim
θ→0

θ êm(θ; S0) =
m∑
k=0

Sk0 lim
θ→0

θBk(θ) = lim
θ→0

θB0(θ),

since

lim
θ→0

θBm(θ) = 0,

lim
θ→0

θBk(θ) = 1
γ1

m∑
n=k+1

(
n
k

)
μn−k lim

θ→0

θ

θ + δk
A∗
n(0) = 0, k = m − 1,m − 2, . . . , 1.

Note that, according to (4.9), we have

B0(θ) = 1
γ1

1
θ

m∑
n=1

A∗
n(0)μn,

then,

lim
θ→0

θB0(θ) = 1
γ1

m∑
n=1

μn lim
θ→0

A∗
n(0) = 1

γ1

m∑
k=1

μk lim
θ→0

A∗
k(0) = 1

γ1

m∑
k=1

μkA∗∗
k ,

where A∗∗
k = limθ→0 A∗

k(0).

Now, let us start with finding the first moment of St conditional on S0 at time t = 0 by inverting
its Laplace transform.
Corollary 4.4: For U0 ∼ �, the first moment of St conditional on S0 is given by

e1(t; S0; δ) = S0e−δt + μ1

γ1

(
1 − e−δt

δ

)
, (4.11)

and the first asymptotic moment is given by

lim
t→∞ E[St | S0] = μ1

γ1δ
. (4.12)
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Proof: Using (4.6) and Proposition 4.1, and setting ξ = θ in Proposition 4.2, the Laplace transform
(with respect to time t) of the first moment of St conditional on S0 for U0 ∼ � is given by

ê1(θ; S0; δ) = S0
θ + δ

+ μ1

1 − p̂(θ)

1
θ + δ

E

[
eθU0

P̄(U0)

∫ ∞

U0

e−θvp(v)dv
]

= S0
θ + δ

+ μ1

γ1

1
θ(θ + δ)

= S0
1

θ + δ
+ μ1

γ1

1
δ

(
1
θ

− 1
θ + δ

)
.

Inverting it immediately gives us (4.11). Note that, we have Laplace transforms

Lθ

{
e−δt} = 1

θ + δ
, Lθ {1} = 1

θ
.

Its asymptotic result in (4.12) follows by setting t → ∞ in (4.11).

Unfortunately, in general, it is not possible for us to obtain other conditional moments explicitly
beyond the first moments. Therefore, we have to develop numerical methods for estimation.
Corollary 4.5: For U0 ∼ �, the second moment of St conditional on S0 is given by

e2(t; S0; δ) = S20e
−2δt + 2μ1

δγ1
S0
(
e−δt − e−2δt)+ μ2

γ1

(
1 − e−2δt

2δ

)
+ μ2

1
δγ1

p̂(δ)
1 − p̂(δ)

F4(t), (4.13)

where F4(t) is a function of time t with the Laplace transform

F̂4(θ) = 1 − p̂(δ)
p̂(δ)

2δ
θ(θ + 2δ)

p̂(θ + δ)

1 − p̂(θ + δ)
; (4.14)

The asymptotic second moment is given by

1
γ1δ

[
μ2

2
+ μ2

1
p̂(δ)

1 − p̂(δ)

]
. (4.15)

Proof: Using (4.5) and Propositions 4.1 and 4.2, the Laplace transform (with respect to time t) of the
second moment of St conditional on S0 for U0 ∼ � is given by

ê2(θ; S0; δ)

= S20
θ + 2δ

+ 2μ1S0
(θ + 2δ)(θ + δ)

1
γ1

+
[

μ2

θ + 2δ
+ p̂(θ + δ)

1 − p̂(θ + δ)

2μ2
1

θ + 2δ

]
1
θ

1
γ1

= S20
1

θ + 2δ
+ 2μ1S0

γ1

1
δ

(
1

θ + δ
− 1

θ + 2δ

)
+ μ2

γ1

1
2δ

(
1
θ

− 1
θ + 2δ

)

+ 2μ2
1

γ1

1
θ

p̂(θ + δ)

1 − p̂(θ + δ)

1
θ + 2δ

(4.16)

= S20
1

θ + 2δ
+ 2μ1S0

γ1

1
δ

(
1

θ + δ
− 1

θ + 2δ

)
+ μ2

γ1

1
2δ

(
1
θ

− 1
θ + 2δ

)

+ μ2
1

δγ1

p̂(δ)
1 − p̂(δ)

F̂4(θ). (4.17)
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The first three terms of (4.17) can be inverted analytically, then, we obtain (4.13). Based on Theorem
4.10, settingm = 2, we can calculate

A∗∗
2 = 1

2δ
, A∗∗

1 = p̂(δ)
1 − p̂(δ)

μ1

δ
.

Substituting A∗∗
1 and A∗∗

2 into (4.10), we derive (4.15).

Corollary 6.3 in Léveillé & Garrido (2001a, p. 230) confirms both our results (4.12) and (4.15).
Interestingly, from a probabilistic point of view, function F4(t) in (4.14) can be nicely interpreted as
the CDF of a random time τ ∗, which can be estimated by the following algorithm:

Algorithm 4.1 (Decomposition Approach): The random time τ ∗ can be exactly sampled by the
following distributional decomposition:

τ ∗ D= E∗ +
I∑

i=1

Ei, (4.18)

where

• E∗ is an exponential random variable of constant rate 2δ, i.e. E∗ ∼ Exp(2δ);
• I is a geometric random variable with success probability parameter 1− p̂(δ), i.e. I ∼ Geometric(

1 − p̂(δ)
)
with the probability mass distribution

Pr
{
I = i

} = p̂i−1(δ)
[
1 − p̂(δ)

]
, i = 1, 2, 3, . . . ;

• {Ei}i=1,2,... are i.i.d. random variables with the identical Laplace transform

f̂Ei (θ) := E
[
e−θEi

] = p̂(θ + δ)

p̂(δ)
. (4.19)

Proof: The Laplace transform of F4(t) specified by (4.14) can be rewritten as

F̂4(θ) = 1
θ

× 2δ
1 − p̂(δ)
p̂(δ)

p̂(θ + δ)

1 − p̂(θ + δ)

1
θ + 2δ

= 1
θ

× 2δ
1 − p̂(δ)
p̂(δ)

1
θ + 2δ

[
1

1 − p̂(θ + δ)
− 1

]

= 1
θ

× 2δ
1 − p̂(δ)
p̂(δ)

1
θ + 2δ

∞∑
i=1

p̂i(θ + δ)

= 1
θ

×
∞∑
i=1

p̂i−1(δ)
[
1 − p̂(δ)

] [ p̂(θ + δ)

p̂(δ)

]i 2δ
θ + 2δ

= 1
θ

×
∞∑
i=1

Pr
{
I = i

} [ p̂(θ + δ)

p̂(δ)

]i 2δ
θ + 2δ

= 1
θ

× E

[[
p̂(θ + δ)

p̂(δ)

]I] 2δ
θ + 2δ

= 1
θ

×
∫ ∞

0
e−θ t f4(t)dt,
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where f4(t) can be considered as the density function of the random time τ ∗ defined by (4.18), and
the associated CDF is given by

F4(t) := Pr
{
τ ∗ ≤ t

} = E
[
1{τ ∗ ≤ t}].

The Laplace transform of the CDF is given by

F̂4(θ) :=
∫ ∞

0
e−θ tF4(t)dt = 1

θ
f̂4(θ),

where

f̂4(θ) :=
∫ ∞

0
e−θ t f4(t)dt

= 1 − p̂(δ)
p̂(δ)

p̂(θ + δ)

1 − p̂(θ + δ)

2δ
θ + 2δ

= E

[[
p̂(θ + δ)

p̂(δ)

]I]
× 2δ

θ + 2δ

= E

[
E

[
e−θ

∑I
i=1 Ei

]]
× E

[
e−θE∗]

= E

[
e−θ

(
E∗+∑I

i=1 Ei
)]

= E

[
e−θτ∗]

. (4.20)

So, we have the decomposition (4.18). Note that, E1,E2, . . . ,EI have the identical Laplace transform
(4.19), and they are well defined random variables, since

f̂Ei (θ) = p̂(θ + δ)

p̂(δ)
=
∫ ∞

0
e−θ t e

−δt

p̂(δ)
p(t)dt =

∫ ∞

0
e−θ t fEi (t)dt,

andwe have the density function of Ei via the Esscher transform (Gerber & Shiu 1994) (or, exponential
tilting) as

fEi (t) = e−δt

p̂(δ)
p(t), (4.21)

and ∫ ∞

0
fEi (t)dt =

∫ ∞

0

e−δt

p̂(δ)
p(t)dt = p̂(δ)

p̂(δ)
= 1.

Note that, since F4(t) can be interpreted as a CDF, we have

lim
t→∞ F4(t) = 1.

Setting t → ∞ in (4.13), again, we obtain the asymptotic result (4.15). Alternatively, F4(t) as a CDF
could be estimated by the numerical inversion of Laplace transform (Abate & Whitt 1992, 1995,
2006), which will be discussed in detail in Section 5.
Corollary 4.6: For U0 ∼ �, the variance of St conditional on S0 is given by

Var
[
St | S0

] = μ2

γ1

(
1 − e−2δt

2δ

)
− μ2

1
γ 2
1

(
1 − e−δt

δ

)2

+ μ2
1

δγ1

p̂(δ)
1 − p̂(δ)

F4(t). (4.22)
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Proof: Based on the first moment (4.11) and the second moment (4.13), we have the variance

Var
[
St | S0

] = E
[
S2t | S0

]− (
E
[
St | S0

] )2
.

The moments, of course, can be estimated by the direct simulation for sample paths of St : Say,
to estimate the moments of St at time T > 0, we have to simulate all interarrival times, jump sizes
within the time period [0,T]; and moreover, as intermediate steps required, we also need to solve all
ODEs recursively between two successive jumps, in order exactly simulate the distribution of St at an
arbitrary time pointT . In fact, it is a path-dependent approach. However, our decomposition approach
provides a shortcut, which avoids simulating full paths of the underlying stochastic processes but only
needs a few simple random variables as illustrated in Algorithm 4.1. Essentially, we use aMonte Carlo
alternative Laplace transform inversion.

4.2. Moments of discounted aggregate claims

Denote themth moment of L0t by
�m(t) := E

[(
L0t
)m] ,

and the associated Laplace transform by

�̂m(θ) :=
∫ ∞

0
e−θ t�m(t)dt,

which can be obtained explicitly as below.
Theorem 4.4: For U0 ∼ �, the Laplace transform of the mth moment of L0t is given by

�̂m(θ) = 1
γ1

1
θ + mr

m∑
n=1

μnÃn, (4.23)

where

Ãm = 1
θ
,

Ãk = p̂
(
θ + (m − k)r

)
1 − p̂

(
θ + (m − k)r

) m∑
n=k+1

Ãn

(
n
k

)
μn−k, k = m − 1,m − 2, . . . , 1, 0.

Proof: Note that, by setting

S0 = 0, L0t = e−rtSt , δ = −r,

in the process St , we recover the associated L0t . Using this duality property, in general, we have the
mth moment of L0t by

E

[(
L0t
)m] = e−mrtem(t; 0;−r).

Then, we have its Laplace transform

�̂m(θ) = Lθ

{
e−mrtem(t; 0;−r)

}
= êm(θ + mr; 0;−r),

where êm(θ; S0; δ) is specified by (4.8).
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Based on the Laplace transform (4.23), as examples, we can compute the first two moments and
the variance as below.
Corollary 4.7: The first moment and the variance of L0t are given by

�1(t) = μ1

γ1

(
1 − e−rt

r

)
, (4.24)

�2(t) = μ2

γ1

(
1 − e−2rt

2r

)
+ μ2

1
rγ1

p̂(r)
1 − p̂(r)

F̃4(t), (4.25)

Var
[
L0t
] = μ2

γ1

(
1 − e−2rt

2r

)
− μ2

1
γ 2
1

(
1 − e−rt

r

)2

+ μ2
1

rγ1
p̂(r)

1 − p̂(r)
F̃4(t), (4.26)

where F̃4(t) is the CDF of random time τ̃ ∗ which can be exactly simulated the same as τ ∗ via Algorithm
4.1 by replacing δ by r.

Proof: Setting
S0 = 0, L0t = e−rtSt , δ = −r,

in (4.11), we have the mean (4.24), i.e.

�1(t) = E
[
L0t
] = e−rte1(t; 0;−r).

Similarly, for the second moment, based on (4.13), we have

�2(t) = E

[(
L0t
)2] = e−2rte2(t; 0;−r),

with its Laplace transform

Lθ

{
�2(t)

} = Lθ

{
e−2rte2(t; 0;−r)

}
= ê2(θ + 2r; 0;−r),

where ê2(θ; S0; δ) is specified by (4.16). Then, we have the Laplace transform

Lθ

{
�2(t)

} = μ2

γ1

1
2r

(
1
θ

− 1
θ + 2r

)
+ 2μ2

1
γ1

1
θ + 2r

p̂(θ + r)
1 − p̂(θ + r)

1
θ
,

which is exactly the same as the last two terms of (4.16) by replacing δ by r. Therefore, we have the
second moment (4.26). Finally, it is straightforward to obtain the variance (4.26).

5. Numerical illustration with applications

To illustrate the applicability of renewal shot-noise processes and our newly-derived results, in this
section, we offer four choices for modelling renewal interarrival times: (1) exponential (Exp), (2)
gamma, (3) inverse Gaussian (IG) and (4) folded normal (FN) distributions. The first two examples
are for actuarial application of discounted aggregate claims. Since the discounted aggregate claims
L0t defined by (2.1) can be alternatively interpreted as the present value of aggregate losses from a
portfolio in general, we use the third and fourth examples for credit risk and reliability applications,
respectively. We commonly assume S0 = 1 and δ = r = 0.05, and the jump sizes follow an
exponential distribution of unit rate, i.e. μ1 = 1,μ2 = 2 for all four cases.

For each case, we compute the first conditional moments and variances of renewal shot-noise
process and discounted aggregate claims, respectively. Except for the first case of exponential dis-
tribution, it is often not easy to obtain explicit expression for F4(t) in (4.22) and F̃4(t) in (4.26).
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We have to rely on estimating F4(t) by Monte Carlo exact simulation (ES)1 via Algorithm 4.1, or,
numerical inversion (NI) of Laplace transform such as Euler algorithm and Talbot algorithm (Abate
&Whitt 2006, p. 415–416). The detailed implementation of NI we adopted in this paper is explained
in Appendix 1. However, it is well known that the algorithms for numerical inversion are not perfect,
and they are often not reliable when the underlying function has some discontinuity or oscillation, or
the function of Laplace transform involves complex special functions. Therefore, efficient simulation
becomes a crucial andmore reliable alternative tool for estimation. Based on the fact that the shape of
true function F4(t) or F̃4(t) beyond the exponential case is unknown, it is prudent for us to implement
the two estimation approaches of ES and NI simultaneously in order to validate each other.

5.1. Example: Poisson shot-noise process

If Nt is a Poisson process, i.e. the interarrival times follow a simple exponential distribution, then,
St is the classical Poisson shot-noise process and explicit results for variances exist. This special case
was investigated by Jang (2004), and same results can be recovered here. In fact, this provides a
benchmark case that can be used for validating the estimation methods ES and NI for computing
F4(t) and F̃4(t) in the conditional second moments and variances. If τi ∼ Exp(),  > 0, with the
density function

p(u) = e−u,

we have
p̂(θ) = 

 + θ
, γ1 = 1


.

From (4.11), we have the first moment

E
[
St | S0

] = S0e−δt + μ1

(
1 − e−δt

δ

)
.

The first moment of discounted aggregate claims (i.e. the actuarial net premium) at present time 0 is
given by

E
[
L0t
] = μ1

(
1 − e−rt

r

)
,

which can be also found in Léveillé & Garrido (2001a, 2001b), Jang (2004) and Jang & Krvavych
(2004). For calculating the associated variances, from (4.20), we have

f̂4(θ) = 2δ
(

1
θ + δ

− 1
θ + 2δ

)
, F̂4(θ) = 2δ

θ

(
1

θ + δ
− 1

θ + 2δ

)
,

which can be inverted analytically, respectively, i.e.

f4(t) = 2δ
(
e−δt − e−2δt) , F4(t) = (

1 − e−δt)2 .

Hence, based on (4.22) and (4.26), we have

Var
[
St | S0

] = μ2

(
1 − e−2δt

2δ

)
, Var

[
L0t
] = μ2

(
1 − e−2rt

2r

)
.

So, Var
[
St | S0

]
and Var

[
L0t
]
are equal when r = δ. We plot the conditional means, the true

and estimated variances of St and L0t for  = 1 respectively in Figure 2, with numerical results
reported in Table 1. Note that, each point in the variance plots is estimated by the exact simulation

1ES is a simulation method of drawing an unbiased associated estimator throughout the entire simulation process.
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Figure 2.Means and variances of St and L0t for the exponential (Exp) case with  = 1; the associated detailed numerical results are
reported in Table 1.

Table 1.Means and variances of St and L0t .

Time t E[St | S0] E[L0t ] NI-Var ES-Var True-Var E[St | S0] E[L0t ] NI-Var ES-Var

〈Exp〉 〈Gamma〉
0.2 1.1891 0.1990 0.3960 0.3942 0.3960 1.1891 0.1990 0.3652 0.3655
0.4 1.3762 0.3960 0.7842 0.7843 0.7842 1.3762 0.3960 0.6860 0.6849
0.6 1.5615 0.5911 1.1647 1.1643 1.1647 1.5615 0.5911 0.9839 0.9790
0.8 1.7450 0.7842 1.5377 1.5411 1.5377 1.7450 0.7842 1.2685 1.2591
1.0 1.9266 0.9754 1.9033 1.9107 1.9033 1.9266 0.9754 1.5443 1.5322
1.2 2.1065 1.1647 2.2616 2.2668 2.2616 2.1065 1.1647 1.8131 1.8044
1.4 2.2845 1.3521 2.6128 2.6110 2.6128 2.2845 1.3521 2.0759 2.0649
1.6 2.4608 1.5377 2.9571 2.9485 2.9571 2.4608 1.5377 2.3333 2.3222
1.8 2.6353 1.7214 3.2946 3.2861 3.2946 2.6353 1.7214 2.5855 2.5695
2.0 2.8081 1.9033 3.6254 3.6152 3.6254 2.8081 1.9033 2.8325 2.8209

〈IG〉 〈FN〉
0.2 1.1891 0.1990 0.3621 0.3623 2.2371 1.2471 2.1387 2.1371
0.4 1.3762 0.3960 0.6992 0.7012 3.4619 2.4817 4.0478 4.0477
0.6 1.5615 0.5911 1.0390 1.0395 4.6745 3.7041 5.9246 5.8159
0.8 1.7450 0.7842 1.3805 1.3840 5.8751 4.9143 7.7669 7.6319
1.0 1.9266 0.9754 1.7215 1.7283 7.0637 6.1125 9.5747 9.6682
1.2 2.1065 1.1647 2.0605 2.0664 8.2405 7.2987 11.3487 11.5322
1.4 2.2845 1.3521 2.3965 2.4025 9.4056 8.4732 13.0894 13.4175
1.6 2.4608 1.5377 2.7288 2.7363 10.5591 9.6359 14.7973 14.8805
1.8 2.6353 1.7214 3.0568 3.0611 11.7011 10.7871 16.4730 16.5891
2.0 2.8081 1.9033 3.3802 3.3764 12.8317 11.9269 18.1169 18.3422

(ES) via Algorithm 4.1 with 107 replications. For implementing Algorithm 4.1, since an exponential
distribution after the exponential tilting (4.21) is still an exponential distribution, i.e.

f̂Ei (θ) = p̂(θ + δ)

p̂(δ)
=


+θ+δ


+δ

=  + δ

( + δ) + θ
,

we have Ei ∼ Exp( + δ) which can be sampled directly.
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Figure 3.Means and variances of St and L0t for the gamma case with (α,β) = (2, 2); the associated detailed numerical results are
reported in Table 1.

5.2. Example: Gamma shot-noise process

For a Gamma distribution (including chi-squared distribution as a special case), i.e. τi ∼ �(α,β)

with density function

p(u) = βα

�(α)
uα−1e−βu, u > 0,

where α,β > 0 are the shape and rate parameters, respectively, we have the mean is γ1 = α/β and
the Laplace transform

p̂(θ) =
(

β

β + θ

)α

.

With the exact simulation via Algorithm 4.1 and using the parameter setting (α,β) = (2, 2), the
associated conditional means and variances are plotted in Figure 3 and reported in Table 1. Each
point in the variance plots is estimated by the exact simulation (ES) via Algorithm 4.1 with 107
replications. For implementing Algorithm 4.1, since a gamma distribution after the exponential
tilting (4.21) is still a gamma distribution, i.e.

f̂Ei (θ) = p̂(θ + δ)

p̂(δ)
=
(

β
β+θ+δ

)α

(
β

β+δ

)α =
(

β + δ

β + δ + θ

)α

,

we have Ei ∼ �(α,β + δ) which can be sampled directly.

5.3. Example: inverse Gaussian shot-noise process

Wecan alsomake an immediate application tomodelling credit defaults:Nt can be used formodelling
the arrivals of credit defaults (of e.g. corporate bonds) in a large credit portfolio, Xi is the loss of the
ith credit default, then, L0t can be interpreted as the present value of the total loss of this credit
portfolio within the time period of [0, t]. Our results for the moments of L0t provided in Section 4.2.
tell people the moments of the portfolio loss, which could be useful for credit risk management and
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Figure 4.Means and variances of St and L0t for the inverse Gaussian (IG) case with (a, b) = (1, 1); the associated detailed numerical
results are reported in Table 1.

measurement. Ut is the time elapsed since the last default occurred2. For numerical illustration, we
assume the interarrival times between two successive credit defaults follow an inverse Gaussian, i.e.
τi ∼ IG(a, b) with density function

p(u) = a√
2πu3

e−
(
a−bu

)2
2u , u, a, b > 0,

where the mean is γ1 = a/b and the shape parameter is a2, we have the Laplace transform

p̂(θ) = e−
[√

2θ+b2−b
]
a
.

With the exact simulation via Algorithm 4.1 and using the parameter setting (a, b) = (1, 1), the
conditional means and variances of St and the present value of credit portfolio losses L0t are plotted
in Figure 4 and reported in Table 1. Each point in the variance plots is estimated by the exact
simulation (ES) via Algorithm 4.1 with 107 replications. For implementing Algorithm 4.1, since an
IG distribution after the exponential tilting (4.21) is still an IG distribution, i.e.

f̂Ei (θ) = p̂(θ + δ)

p̂(δ)
= e−

[√
2(θ+δ)+b2−b

]
a

e−
[√

2δ+b2−b
]
a

= e−
[√

2θ+(2δ+b2
)−√

2δ+b2
]
a,

we have Ei ∼ IG
(
a,

√
2δ + b2

)
which can be sampled directly.

2Since the 2007 financial crisis, default rates of corporate bonds have decreased, as the world economy has emerged from the
global financial crisis (GFC) with improving market conditions. However, default rates going forward are dependent on the
progress of world economic recovery and growth, as well as oil and commodity prices, fiscal and monetary policy and interest
rate fluctuations. Hence, in specific situations like 2007-2008 GFC, the time elapsed since the last default occurred could be an
important parameter in credit default modelling. The properties of renewal shot-noise processes and the results newly found in
this paper could be also appropriate for modelling credit risk.
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Figure 5.Means and variances of St and L0t for the folded normal (FN) case with (μ, σ) = (0, 0.2); the associated detailed numerical
results are reported in Table 1.

5.4. Example: folded normal shot-noise process

Queues and related models are important in solving many complex reliability problems. The renewal
shot-noise process and its variations can be considered to deal with the expected busy periods in
terms of queuing system and the virtual waiting times of customers, etc. Due to the similar nature
of cashflow structure, our results could also be applied to reliability modelling. Nt accounts the total
number of failures of machine components up to time t. Xi is the individual cost of the ith failure,
then, L0t can be interpreted as the present value of the total cost within the time period of [0, t]. For
reliability modelling, we take the folded normal distribution (including the half-normal distribution
as a special case) as an example for modelling the interarrival times of two successive failures, i.e.
τi ∼ FN(μ, σ) with density function

p(u) = 1√
2πσ 2

[
e−

(u−μ)2

2σ2 + e−
(u+μ)2

2σ2

]
u ≥ 0,

where μ, σ > 0, we have the mean

γ1 =
√

2
π

σ e−
μ2

2σ2 + μ
[
1 − 2�

(
−μ

σ

)]
,

and the Laplace transform

p̂(θ) = e
σ2
2 θ2−μθ

[
1 − �

(
−μ

σ
+ σθ

)]
+ e

σ2
2 θ2+μθ

[
1 − �

(μ

σ
+ σθ

)]
. (5.1)

Each point in the variance plots is estimated by the exact simulation (ES) via Algorithm 4.1 with
107 replications. For implementing Algorithm 4.1, since an folded normal distribution after the
exponential tilting (4.21) is unknown, we need the acceptance/rejection (A/R) scheme of Algorithm 2,
where τi ∼ FN(μ, σ) in Step 1 can be simply sampled via

τi
D= |μ + σV | , V ∼ N (0, 1).



SCANDINAVIAN ACTUARIAL JOURNAL 749

With the exact simulation via Algorithm 4.1 and using the parameter setting (μ, σ) = (0, 0.2), the
conditional means and variances of St and the present value of total cost L0t are plotted in Figure 5
and reported in Table 1.

6. Concluding remarks

We have mainly studied the Laplace transforms of the conditional and asymptotic moments for
renewal shot-noise processes and discounted aggregate claims. A very efficient and general simulation
algorithm has been developed for estimating the second conditional moments, and it has been
compared with the alternative method of numerical inversion. For applications to the net premium
calculation in insurance as well as credit risk and reliability modelling, the first conditional moments
and variances for four different distributions of interarrival times have been computed, respectively.
In fact, renewal shot-noise processes and the properties found in this paper could be also applicable
to a wide range of other fields such as queueing, financial transaction data, computer networks,
inventories and storage system, etc., and we leave them as further research.
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Appendix 1. Numerical inversion of Laplace transform
There are numerous different schemes available in the literature for Laplace numerical inversions. The aim of using
numerical inversion in this paper is for comparing and validating our newly developed exact simulation algorithms.
As finding optimal schemes for numerical inversions is not our main focus here at the current stage, we thereby adopt
conventional ones. For the first three cases in Section 5, i.e. exponential, gamma and inverse Gaussian cases, which are
easier, we simply apply the classical Talbot algorithm (Abate & Whitt 2006, Section 6, p. 416). It works very well by
using the existing package of MatLab codes euler_inversion_sym.m available at MathWorks. For the folded normal
case, which is more complicated due to the special function �( · ) in the Laplace transform p̂(θ) specified in (5.1), we
develop our own codes based on the Euler algorithm (Abate &Whitt 2006, Section 5, p. 415–416) with the aid of existing
C++ package RcppFaddeeva from CRAN that can deal with the function �( · ) for complex values. Both algorithms
involve tuning (or scaling) parameters, which are simple deterministic functions of positive integer M, the number
of terms for approximating the infinite summation, that controls the associated truncation errors. More precisely, as
illustrated in Abate &Whitt (2006), for a given Laplace transform f̂ of a function f , i.e.

f̂ (s) ≡
∫ ∞

0
e−st f (t)dt,

the underlying function f can be approximated by

f (t) ≈ fn(t) ≡ 1
t

n∑
k=0

ωk f̂
(αk

t

)
, t > 0, (A1)

where the nodes αk and weights ωk are the associated tuning (or scaling) parameters, which are complex numbers, and
depend on n but not on the transform f̂ or the time argument t. These tuning parameters are specified differently by
Talbot algorithm and Euler algorithm as follows:

• For the Talbot algorithm (Abate & Whitt 2006, Section 6, p. 416), the parameters in the framework (A1) are
n = M, αk = δk and ωk = 2

5γk , where

δ0 = 2
5
M, δk = 2

5
kπ
[
cos

(
kπ
M

)
+ i
]
, 0 < k < M,

γ0 = 1
2
eδ0 , γk =

[
1 + i

kπ
M

(
1 + cot2

(
kπ
M

))
− i cot

(
kπ
M

)]
eδk , 0 < k < M,

with i ≡ √−1.

https://uk.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform
https://cran.r-project.org/web/packages/RcppFaddeeva/
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• For the Euler algorithm (Abate &Whitt 2006, Section 5, p. 415–416), the parameters in the framework (A1) are
n = 2M, αk = βk and ωk = 10

M
3 ηk , where

βk = ln 10
3

M + π ik, ηk ≡ ( − 1)kξk ,

ξ0 = 1
2
, ξk = 1, 1 ≤ k ≤ M, ξ2M = 1

2M
,

ξ2M−k = ξ2M−k+1 + 2−M
(
M
k

)
, 0 < k < M.

In our paper, we adopt M = 64 for the first three cases and M = 6 for the folded normal case, which determine
the associated tuning parameters, respectively. From extensive numerical experiments, we do find that the estimation
results from numerical inversion algorithms could be unstable for some sets of parameters. Indeed, it is a very typical
problem for the numerical inversion approach, and it is why we shall advocate using our newly developed exact
simulation approach as an alternative.

Appendix 2. Random variate generator for Ei
Algorithm B.1 (A/R Scheme for Ei): For exactly sampling one random variable Ei in general:

(1) Generate a random variable Ee with density p(u);
(2) Generate a uniformly distributed random variable V ∼ U [0, 1];
(3) If V ≤ e−δEe , then, accept and set Ei = Ee; otherwise, reject and go back to Step 1.

Proof: To exactly sample a random variable Ei with the density function (4.21), we adopt the acceptance/rejection
(A/R) scheme with the envelop density function fEe (t) = p(t). Then, we can easily find the smallest possible constant
K such that

fEi (t)
fEe (t)

= e−δt

p̂(δ)
≤ K .

Hence, we have K = 1/p̂(δ), and the acceptance level

fEi (t)
Kp(t)

= e−δt .

Note that, the probability of acceptance is 1/p̂(δ).
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